阅读申明 - 1.本站收集的数据手册和产品资料都来自互联网,版权归原作者所有。如读者和版权方有任何异议请及时告之,我们将妥善解决。 - 2.本站提供的中文数据手册是英文数据手册的中文翻译,其目的是协助用户阅读,该译文无法自动跟随原稿更新,同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。 - 3.本站提供的产品资料,来自厂商的技术支持或者使用者的心得体会等,其内容可能存在描 叙上的差异,建议读者做出适当判断。 - 4.如需与我们联系,请发邮件到marketing@iczoom.com,主题请标有"数据手册"字样。 # **Read Statement** - 1. The datasheets and other product information on the site are all from network reference or other public materials, and the copyright belongs to the original author and original published source. If readers and copyright owners have any objections, please contact us and we will deal with it in a timely manner. - 2. The Chinese datasheets provided on the website is a Chinese translation of the English datasheets. Its purpose is for reader's learning exchange only and do not involve commercial purposes. The translation cannot be automatically updated with the original manuscript, and there may also be improper translations. Readers are advised to use the English manuscript as a reference for more accurate information. - 3. All product information provided on the website refer to solutions from manufacturers' technical support or users the contents may have differences in description, and readers are advised to take the original article as the standard. - 4. If you have any questions, please contact us at marketing@iczoom.com and mark the subject with "Datasheets". ## Plastic Fiber Optic Transmitter Diode Plastic Connector Housing ## SFH757 SFH757V #### **Features** - High speed transmitter for about 50 Mbit/s up to 100 Mbit/s (with peaking circuit) - 2.2 mm aperture holds standard 1000 micron plastic fiber - No fiber stripping required - · Molded microlens for efficient coupling ### **Plastic Connector Housing** - · Mounting screw attached to the connector - Interference-free transmission from light-tight housing - Transmitter and receiver can be flexibly positioned - No cross talk - · Auto insertable and wave solderable - Supplied in tubes ### **Applications** - Household electronics - Power electronics - · Optical networks - · Light barriers | Туре | Ordering Code | |---------|---------------| | SFH757 | Q62702-P3526 | | SFH757V | Q62702-P3527 | ### **Technical Data** # **Absolute Maximum Ratings** | Parameter | Symbol | Limit Values | | Unit | |--|------------------|--------------|------|------| | | | min. | max. | | | Operating Temperature Range | T_{OP} | -40 | +80 | °C | | Storage Temperature Range | T_{STG} | -40 | +100 | °C | | Junction Temperature | $T_{\sf J}$ | | 100 | °C | | Soldering Temperature (2 mm from case bottom, $t \le 5$ s) | $T_{\mathbb{S}}$ | | 260 | °C | | Reverse Voltage | V_{R} | | 3 | V | | Forward Current | I_{F} | | 50 | mA | | Surge Current ($t \le 10 \mu s$, $D = 0$) | I_{FSM} | | 1 | Α | | Power Dissipation | P_{tot} | | 120 | mW | | Thermal Resistance, Junction/Air | R_{thJA} | | 450 | K/W | ## **Characteristics** $(T_A = 25^{\circ}\text{C})$ | Parameter | Symbol | Value | Unit | |---|---|------------------------|------| | Peak Wavelength | λ_{Peak} | 650 | nm | | Spectral Bandwidth | Δλ | 25 | nm | | Switching Times ($R_{\rm L}$ = 50 Ω , $I_{\rm F}$ = 50 mA) 10%90% 90% 10% | <i>t</i> _R <i>t</i> _F | 15 (< 17)
18 (< 20) | ns | | Capacitance ($f = 1 \text{ MHz}, V_{R} = 0 \text{ V}$) | C_{O} | 30 | pF | | Forward Voltage ($I_F = 50 \text{ mA}$) | V_{F} | 2.1 (≤ 2.8) | V | | Output Power Coupled into Plastic Fiber $(I_F = 10 \text{ mA})^{1)}$ | Φ_{IN} | 150
(≥ 100) | μW | | Temperature Coefficient Φ_{IN} | TC_{Φ} | -0.4 | %/K | | Temperature Coefficient V_{F} | TC_{V} | -3 | mV/K | | Temperature Coefficient λ _{Peak} | TC_{λ} | 0.16 | nm/K | The output power coupled into plastic fiber is measured with a large area detector at the end of a short length of fiber (about 30 cm). This value must not be used for calculating the power budget for a fiber optic system with a long fiber because the numerical aperture of plastic fibers decreases on the first meters. Therefore the fiber seems to have a higher attenuation over the first few meters compared with the specified value. # Relative Spectral Emission $I_{\text{rel}} = f(\lambda)$ Forward Current $I_F = f(V_F)$ single pulse, duration = 20 µs Relative Output Power $I_{\rm e}/I_{\rm e(50~mA)}=f(I_{\rm F})$ single pulse, duration = 20 $\mu \rm s$ # Maximum Permissible Forward Current $I_{\rm F} = f(T_{\rm A}),~R_{\rm thJA} = 450~{\rm K/W}$ ### **Permissible Pulse Handling Capability** $I_{\rm F}$ = $f(t_{\rm P})$, duty cycle D = parameter, $T_{\rm A}$ = 25°C ### **Package Outlines** ### **Package Outlines** Figure 1 Figure 2 ### SFH757 SFH757V Revision History: 2004-03-19 DS1 Previous Version: 2002-03-14 #### Edition 2004-03-19 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved. #### Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. #### Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). #### Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.